Компьютерное моделирование состояние цилиндрических тел при комбинированном воздействии

Д. И. Соломатин, e-mail: solomatin.cs.vsu.ru@gmail.com А. А. Верлин, Р. Г. Меджидов, Ю. В. Некрасов

Воронежский государственный университет, Воронеж, Россия

Аннотация. В рамках теории малых упругопластических деформаций предложен алгоритм численного решения задачи определения теромо-упругопластического состояния толстостенной иилиндрической трубы, подверженной комбинированной нагрузке. Пластические деформации и напряжения связаны нормальным законом. Рассматриваются гладкие нелинейные функции пластичности. Учитывается зависимость параметров материала всех от температуры.

Ключевые слова: нелинейное условие пластичности, ассоциированный закон пластического деформирования, температурная зависимость параметров материала, теория малых деформаций, сжимаемое упругопластическое тело.

Введение

Имеется большое количество работ, в которых анализируется упругопластическое состояние цилиндрических тел. Так в работе [1] в рамках теории пластического течения и условия пластичности Мизеса изучалось влияние упругой сжимаемости материала и коэффициента линейного упрочнения на напряженно-деформированное состояние упругопластического пространства с цилиндрической полостью. Было упругой материала показано сильное влияние сжимаемости и незначительное влияние линейного упрочнения. В последние годы много работ связано с рассмотрением теплового влияния на состояние цилиндрических тел [2-7]. Большая часть работ связана с выбором кусочно-линейных функций пластичности [3-7], что позволяет получить аналитическое решение ряда задач. Учет температурной зависимости упругих параметров материала, а также выбор нелинейных функций пластичности, в основном, требует численного решения задач.

1. Принятые обозначения

- 0 р θz цилиндрическая система координат,
- *b* внешний радиус цилиндра,

[©] Соломатин Д. И., Верлин А. А., Меджидов Р. Г., Некрасов Ю. В., 2023

а – внешний радиус цилиндра,

- *е* модуль Юнга,
- *v* коэффициент Пуассона,

α – коэффициент линейного теплового расширения,

к – предел пластичности,

т – температура

 p_a, T_a – давление и температура на границе $\rho = a$,

 p_b , T_b – давление и температура на границе $\rho = b$,

 $\sigma_{\rho}, \sigma_{\theta}, \sigma_{z}, -$ компоненты тензора напряжений,

 ε_{ρ} , ε_{θ} , ε_{z} , – компоненты тензора деформаций,

 $\varepsilon_{\rho}^{p}, \varepsilon_{\theta}^{p}, \varepsilon_{z}^{p}, -$ компоненты тензора пластических деформаций,

и – радиальная компонента вектора перемещений.

2. Постановка задачи

Толстостенная круговая труба находится под тепловым и силовым воздействиями. Необходимо найти поля напряжений, деформаций и перемещений. Для решения задачи выбирается цилиндрическая система координат ρ , θ , z, ось z которой направлена по оси симметрии трубы (цилиндра). На границах $\rho = a$ и $\rho = b$

$$\begin{split} \sigma_{\rho} \mid_{\rho = a} &= -p_{a}, \\ \sigma_{\rho} \mid_{\rho = b} &= -p_{b}, \\ T \mid_{\rho = a} &= T_{a}, \\ T \mid_{\rho = b} &= T_{b}. \end{split}$$

Все параметры материала зависят от температуры

 $E \ = \ E \ (T \), \quad v \ = \ v \ (T \), \quad k \ = \ k \ (T \), \quad \alpha \ = \ \alpha \ (T \) \ .$

Принимается теория малых деформаций и гипотеза естественного состояния. Рассматривается случай плоского деформированного состояния.

3. Безразмерные величины

Все величины приводятся к безразмерному виду. В качестве характерного масштаба напряжений принимается значение предела пластичности. За масштаб длины выбирается значение внешнего радиуса трубы. За масштаб температуры – 1°С. Поскольку деформации ε_i , являясь безразмерными величинами, имеют значения порядка E^{-1} , то в дальнейших численных расчетах рассматривается деформации

и перемещения умноженные на безразмерный модуль Юнга, т.е. используется запись *Е* є_i, *Е* и . Для удобочитаемости формул за безразмерными величинами сохраняются обозначения соответствующих размерных величин.

4. Основные соотношения

Для рассматриваемой осесимметрической задачи уравнение равновесия запишем в виде

$$\rho \frac{d\sigma_{\rho}}{d\rho} + \sigma_{\rho} - \sigma_{\theta} = 0.$$
 (1)

В случае плоского деформированного состояния соотношения Коши, определяющие деформации через перемещения, имеют вид

$$\varepsilon_{\rho} = \frac{du_{\rho}}{d\rho}, \quad \varepsilon_{\theta} = \frac{u_{\rho}}{\rho}, \quad \varepsilon_{z} = 0.$$
 (2)

Перемещения удовлетворяют условию совместности деформаций

$$\rho \frac{d \varepsilon_{\theta}}{d \rho} + \varepsilon_{\theta} - \varepsilon_{\rho} = 0.$$
(3)

Если учитывается тепловое воздействие, то упругие деформации связаны с напряжениями линейными соотношениями Дюамеля-Неймана

$$E \varepsilon_{\rho}^{e} = \sigma_{\rho} - v (\sigma_{\theta} + \sigma_{z}) + E \alpha T,$$

$$E \varepsilon_{\theta}^{e} = \sigma_{\theta} - v (\sigma_{\rho} + \sigma_{z}) + E \alpha T,$$

$$E \varepsilon_{z}^{e} = \sigma_{z} - v (\sigma_{\theta} + \sigma_{\rho}) + E \alpha T,$$
(4)

Когда в упругой области необратимых деформаций нет, то упругие деформации являются полными, поэтому в случае плоской деформации

$$\varepsilon_{\tau}^{e} = 0 \tag{5}$$

и тогда из третьего равенства (4), учитывая (5), следует, что

$$\sigma_{z} = v (\sigma_{\theta} + \sigma_{\rho}) - E \alpha T$$
.

5. Поле температур

Для рассматриваемых граничных условий стационарное поле температур определяется из решения уравнения

$$\frac{d}{d\rho} \left(\kappa \rho \; \frac{dT}{d\rho} \right) = 0 \; .$$

Если коэффициент температурного расширения $\kappa = const$, то

$$T = \frac{Ta \ln(\rho / b) - Tb \ln(\rho / a)}{\ln(a / b)}$$

6. Упругая область

Подставив деформаций из соотношений закона Дюамеля-Неймана (4) в условия совместности деформаций (3) и, учитывая уравнение равновесия (1), получим систему уравнений

$$\begin{cases} \rho \frac{d\sigma_{\rho}}{d\rho} + \sigma_{\rho} - \sigma_{\theta} = 0, \\ \left\{ (1-v)\rho \frac{d\sigma_{\theta}}{d\rho} - v \left(1 + \frac{2\rho}{1+v} \frac{dv}{d\rho} \right) \sigma_{\theta} + \left(v - \frac{\rho}{1+v} \frac{dv(1+v)}{d\rho} \right) \sigma_{\rho} + \left(\frac{\rho}{1+v} \frac{d(1+v)E\alpha T}{d\rho} \right) \sigma_{\rho} + \left(\frac{\rho}{1+v} \frac{d(1+v)E\alpha T}{d\rho} \right) \sigma_{\theta} = 0. \end{cases}$$
(6)

В упругой области определение напряжений деформаций и перемещений связано с решением системы уравнений (2), (4), (6).

7. Эквивалентное напряжение

Для оценки напряженного состояния в упругом теле вводится эквивалентное напряжение. При изменении значения внешних параметров (параметров нагрузки), характеризующих внешнее воздействие на рассматриваемый объект, задание эквивалентного напряжения, позволяет рассматривать процесс нагружения, нейтрального нагружения и разгрузки в каждой точке упругой области.

Для упругопластического тела в качестве эквивалентного напряжения в упругой области естественно выбрать функцию пластичности.

8. Условие пластичности

Предлагаемый алгоритм решения задачи допускает выбор любого условия пластичности идеального упругопластического тела. Для определенности, в качестве примера рассматривается однородная функция пластичности.

$$F_1 = \frac{\left(\left(\sigma_\theta - \sigma_\rho\right)^{2n} + \left(\sigma_\theta - \sigma_z\right)^{2n} + \left(\sigma_z - \sigma_\rho\right)^{2n}\right)^{\frac{1}{n}} + \xi \left(\sigma_\theta + \sigma_\rho + \sigma_z\right)^2}{\xi + 2} - k^2,$$

$$F_{2} = \frac{\left(\left(\sigma_{\theta} - \sigma_{\rho}\right)^{2n} + \left(\sigma_{\theta} - \sigma_{z}\right)^{2n} + \left(\sigma_{z} - \sigma_{\rho}\right)^{2n}\right)^{\frac{1}{2n}} + \xi\left(\sigma_{\theta} + \sigma_{\rho} + \sigma_{z}\right)}{\xi + 2} - k ,$$

$$F_{3} = \frac{\left(\left(\sigma_{\theta} - \sigma_{\rho}\right)^{2n} + \left(\sigma_{\theta} - \sigma_{z}\right)^{2n} + \left(\sigma_{z} - \sigma_{\rho}\right)^{2n}\right)^{\frac{1}{n}} + \left(\xi\left(\sigma_{\theta} + \sigma_{\rho} + \sigma_{z}\right) - k\right)^{2}}{2 + \left(1 - \xi\right)^{2}}$$

На рис. 1 показано изображение поверхностей пластичности в пространстве главных напряжений. Поверхность пластичности, определяемая уравнением $F_3 = 0$, не является выпуклой.

a) $F_1 = 0, n = 1, \xi = 0.02; b$) $F_2 = 0, n = 40, \xi = 0.3; c$) $F_3 = 0, n = 1, \xi = 0.25$

Рис. 1. Поверхности пластичности

9. Пластическая область

В пластической области деформации определяются суммой упругой и пластической составляющих

$$\varepsilon_{\rho} = \varepsilon_{\rho}^{e} + \varepsilon_{\rho}^{p}, \quad \varepsilon_{\theta} = \varepsilon_{\theta}^{e} + \varepsilon_{\theta}^{p}, \quad \varepsilon_{z} = \varepsilon_{z}^{e} + \varepsilon_{z}^{p}.$$

Напряжения, деформации и перемещения определяются из решения системы уравнений

$$\begin{vmatrix} \rho \frac{d \sigma_{\rho}}{d \rho} + \sigma_{\rho} - \sigma_{\theta} + m \rho^{2} = 0, \\ F = 0, \\ \rho \frac{d \varepsilon_{\theta}}{d \rho} + \varepsilon_{\theta} - \varepsilon_{\rho} = 0. \end{vmatrix}$$

Упругие деформации определяются через напряжения согласно закону Дюамеля-Неймана.

Согласно ассоциированному закону пластического деформирования [8] пластические деформации связаны соотношениями

$$\begin{split} \varepsilon_{\theta}^{p} &= \frac{\partial F / \partial \sigma_{\theta}}{\partial F / \partial \sigma_{z}} \varepsilon_{z}^{p} \,, \\ \varepsilon_{\theta}^{p} &= \frac{\partial F / \partial \sigma_{\theta}}{\partial F / \partial \sigma_{z}} \varepsilon_{z}^{p} \,, \end{split}$$

Из равенства $\varepsilon_z = \varepsilon_z^e + \varepsilon_z^p = 0$ и соотношений закона Дюамеля-Неймана следует, что

$$\varepsilon_z^p = -\sigma_z + v (\sigma_\theta + \sigma_\rho) - E \alpha T$$
.

Перемещения определяются по формуле

$$u = \rho \varepsilon_{\theta}$$
.

Радиус упругопластической границы можно определять, рассматривая разные варианты непрерывности искомых величин на упругопластической границе.

Приведенные соотношения, с учетом выбранных граничных условий и условий непрерывности напряжений и перемещений на упругопластической границе, позволяют получить численное решение задачи. Можно рассматривать разные алгоритмы решения задачи, но выбор конкретного алгоритма не является принципиальным моментом численного решения задачи.

10. Результаты численного решения задачи

При выполнение численного решения задачи, для определенности, принималось, что параметры материала имеют следующую зависимость от температуры

$$E = E_0 (1 - \delta_E T^2), \quad v = v_0 (1 + \delta_v T), \quad \alpha = \alpha_0 (1 + \delta_\alpha T), \quad k = k_0 (1 - \delta_k T^2).$$
(7)

Если не рассматривается зависимость каких-либо параметров материала от температуры, то соответствующие коэффициенты δ_{F} , δ_{v} , δ_{a} , δ_{k} в (7) равны нулю.

На рис. 2 показаны графики напряжений, пластических деформаций и перемещений для разных значений параметров материала и температуры. В расчетах принималось, что $E_0 = 207$, $\alpha_0 = 1.43 \cdot 10^{-5}$, $k_0 = 1$, $T_a = 310$, $T_b = 0$.

Puc. 5. $\delta_E = 0$, $\delta_\alpha = 0$, $\delta_k = 0$, $\delta_v = 0$, $v_0 = 0.25$

Графики, приведенные на рис. 3 и рис. 4, показывают, что по сравнению с упруго несжимаемым телом ($v_0 = 0.5$) малое изменение коэффициента Пуассона ($v_0 = 0.45$) приводит к уменьшению радиуса упругопластической границы на 5.58%. Здесь следует иметь ввиду, что для металлов, например, сталей разных марок коэффициент Пуассона $v_0 = 0.2 \div 0.35$. Графики на рис. 4 и рис. 5 показывают, что выбор «условных» параметров материала вместо и «реалистичных» может приводить к существенно разным результатам.

Заключение

Выполненные численные расчеты для рассматриваемой задачи и выбранная математическая модель показывает, что малое изменение отдельных параметров материала в процентном отношении сопоставимо с изменениями в полях напряжений деформаций и перемещений.

Литература

1. Киликовская О. А. Влияние упрочнения и сжимаемости материала на решение упругопластических задач о деформировании пространства с цилиндрической полостью / О. А. Киликовская, Н. В. Овчинникова // Изв. РАН. МТТ. – 2012. – № 1. – С. 75-91.

2. Jahanian, S. Thermoelastoplastic and residual stresses in a hollow cylinder with temperature-dependent properties / S. Jahanian, M. Sabbaghian // J. Press. Vessel Techn. -1990. - V. 112 - P. 85-91.

3. Eraslan, A. N. The strain hardening rotating hollow shaft subject to a positive temperature gradient / A. N. Eraslan, E. Arslan, W. Mack // Acta Mech. -2007. -194. -P. 191-211.

4. Дац, Е. П. Технологические температурные напряжения в процессах горячей посадки цилиндрических тел при учете пластических

течений / Е. П. Дац, А. В. Ткачева // Прикладная механика и техническая физика. – 2016. – Т. 57, № 3. – С. 208-216.

5. Буренин, А. А. Об особенностях использования условия максимальных приведенных касательных напряжений в теории неустановившихся температурных напряжений / А. А. Буренин, А. В. Ткачева, Г. А. Щербатюк // Вестник Чувашского государственного педагогического университета имени И. Я. Яковлева. Серия: Механика предельного состояния. – 2018. – № 2(36). – С. 74–90.

6. Prokudin, A. N. Elastoplastic deformation of a rotating hollow cylinder with a rigid casing / A. N. Prokudin, S. V. Firsov // PNRPU Mechanics Bulletin. -2019. -N.4. -P. 120–135.

7. Prokudin, A. N. Schmidt-Ishlinskii Yield Criterion and a Rotating Cylinder with a Rigid Inclusion/ A. N. Prokudin // J. Appl. Comput. Mech. – 2021. - N. 7(2). - P. 858-869.

8. Semka, E. V. Mathematical modeling of rotating disk states, Mathematical modeling of rotating disk states / E. V.Semka, M. A. Artemov, Y. N. Babkina, E. S. Baranovskii, A. I. Shashkin // Journal of Physics: Conference Series 1479 (2020) 012122